SPECIALITE NSI SAACITE SCOLAIRE -

Processus

1 NOTION DE PROCESSUS

Un processus est un programme en cours d'exécution. Il est caractérisé par :

- un ensemble d'instructions a exécuter - souvent stockées dans un fichier sur
lequel on clique pour lancer un programme (par exemple firefox.exe)

- un espace mémoire dédié a ce processus pour lui permettre de travailler sur des
données qui lui sont propres : si vous lancez deux instances de firefox, chacune
travaillera indépendamment de l'autre avec ses propres données.

. des ressources matérielles : processeur, entrées-sorties (accés a internet en
utilisant la connexion Wifi).

2 ETATS ET ORDONNANCEMENT D'UN PROCESSUS

Dans un systéme multitdche plusieurs processus sont actifs simultanément, mais un
processeur (simple coeur) ne peut exécuter qu'une instruction a la fois.

Le systéme d'exploitation, avec son ordonnanceur (ou scheduler en anglais) va partager
le temps de processeur disponible entre tous les processus en sélectionnant le
processus a exécuter parmi ceux qui sont préts.

Le systéeme d'exploitation alloue a chacun des processus les ressources dont il a besoin
en termes de mémoire, entrées-sorties ou temps processeur.

Un processus peut se trouver dans différents états :

- prét (ready): le processus attend son tour,

- élu ou en exécution (running): le processus a acces au processeur pour exécuter
ses instructions,

- bloqué ou en attente (sleeping) : le processus attend qu'un événement ou l'acceés a
une ressource,

. arrété (stopped) : le processus a fini son travail ou a regu un signal de terminaison
(SIGTERM, SIGKILL, ...). Il libére les ressources qu'il occupe.

Si une ressource demandée est inaccessible, un AT
processus en cours d'exécution peut passer en zl”‘._\e”exémon{wz
attente (1). et \'

[ enattente |
— prét

Lorsque la ressource est disponible, le )
processus devient prét (4). —

Le systeme d'exploitation (ordonnanceur) lui

, : Le processus se met en attente d'un événement
autorise son exécution (3).

: L'ordonnanceur passe la main & un autre processus
: L'ordonnanceur choisit ce processus
: L'événement attendu se produit

W

Il le passera en état prét afin de pouvoir exécuter
un autre processus (2).

1/6



SPECIALITE NSI g CITE B0 L

3 CREATION D'UN PROCESSUS, PID,
PPID

La création d'un processus peut intervenir :

. par une action d'un utilisateur (lancement de l'application),
- par un appel d'un autre processus « pére »,
.- au démarrage du systeme (le processus « init » est alors le pére).

Un processus est caractérisé par un identifiant unique : son PID (Process Identifier).

Lorsqu'un processus engendre un fils, I'OS génére un nouveau numéro de processus
pour le fils. Le fils connait aussi le numéro de son pere : le PPID (Parent Process
Identifier).

Ci-dessous : le processus du terminal bash (885) a été lancé par sshd (884).

uiD PID PPID C STIME TTY TIME CMD

root 814 1 0 10:55 ? 00:00:00 /usr/sbin/sshd -D

root 829 2 0 10:55 ? 00:00:00 [kworker/@:6-events]

root 872 814 © 10:55 ? 00:00:00 sshd: nsi [priv]

nsi 875 1 © 10:55 ? 00:00:00 /lib/systemd/systemd --user
nsi 876 875 © 10:55 ? 00:00:00 (sd-pam)

nsi 884 872 0 10:55 ? 00:00:00 sshd: nsi@pts/0

nsi 885 884 0 10:55 pts/e 00:00:00 -bash

4 GERER LES PROCESSUS DEPUIS LE SHELL

Création d'un processus qui va exécuter le programme commande

o)

% commande
ps : Liste les processus

« Pour lister les processus actifs :
$ ps ax

« Pour lister les processus actifs avec leurs utilisateurs :
% pS axu

« Pour lister les processus actifs avec les informations sur les utilisateurs et sur
l'occupation mémoire :

% psS axum

top Affichage en continu des informations relatives aux processus
- M :trie la liste par ordre décroissant d'occupation mémoire. Pratique pour repérer
les processus trop gourmands
. P:trie la liste par ordre décroissant d'occupation processeur
i :filtre les processus inactifs.
« V:permet d'avoir la vue arborescente sur les processus.
q: permet de quitter top

2/6



SPECIALITE NSI

kill
terminaison :

« tue » le processus désigné avec un signal de

2" CITE SCOLAIRE -

SIGTERM (15) : demande la terminaison d'un processus. Cela permet au processus
de se terminer proprement en libérant les ressources allouées.

SIGKILL (9)

demande

la terminaison

immeédiate et

inconditionnelle d'un

processus. C'est une terminaison violente a n'appliquer que sur les processus
récalcitrants qui ne répondent pas au signal SIGTERM.

$ kill -9 pid

killall «tue » le processus désigné a« tue » les processus désignés par leur nom

% killall nom

]

pstree permet de visualiser l'arbre de processus.

5 INTERBLOCAGE (OU DEADLOCK)

L'interblocage peut

se produire

lorsque des processus concurrents s'attendent

mutuellement. Les processus sont alors bloqués définitivement.

Exécution

§03 P1

R1

Prét Exécution

Tty

ore1 a2
R1 R2

Prét Execution
I]

7

(=

OLe processus P1 est
exécuté. Il accede a la
ressource R1.

@L'ordonnanceur passe la
main au processus P2. Celui
ci accede a la ressource R2.

©Puis P2 essaye d'accéder
a la ressource R1 qui est
toujours utilisée par P1.

Prét En attente

£038 P1 P2
i1\ 4 ‘(ﬁ/ &

3 R1 R2

Exécution En attente

2,55

En attente En attente

P2

P1
&é E % &
R1 R2

OL'ordonnanceur place P2
en attente tant que R1 est
utilisée.

OL'ordonnanceur passe la
main au processus P1. Celui
ci essaye d'accéder a la
ressource R2 qui est
toujours utilisée par P2...

OL'ordonnanceur place P1
en attente tant que R2 est
utilisée...

Les 2 processus se sont
inter-bloqués...

3/6



SPECIALITE NSI SAACITE SCOLAIRE -
5.1 PRIORITES

Sous Linux, on peut passer des consignes a l'ordonnanceur en fixant des priorités aux
processus dont on est propriétaire : Cette priorité est un nombre entre -20 (plus
prioritaire) et +20 (moins prioritaire). Seul root peut modifier la priorité de -20 a 20. Les
autres utilisateurs ne peuvent que diminuer la priorité de leurs processus.

On peut agir a 2 niveaux :

fixer une priorité a une nouvelle tache dés son démarrage avec la commande

nice
modifier la priorité d'un processus en cours d'exécution grace a la commande
renice
Les colonne PR et NI de la commande top montrent le niveau de priorité de chaque
processus

Le lien entre PR et NI est simple : PR = NI + 20 ce qui fait qu'une priorité PR de 0 équivaut
a un niveau de priorité maximal.
Exemple : Pour baisser la priorité du process terminator dont le PID est 21523, il

suffit de taper
renice +10 21523

4/6



SPECIALITE NSI SAACITE SCOLAIRE -

6 ACTIVITES

6.1 VIDEOS

Visionner les vidéos :
https://www.youtube.com/watch?v=804VQVrhoW8

https://www.youtube.com/watch?v=tVceqyévVqQ

6.2 AFFICHAGE DES PROCESSUS

Les activités peuvent étre réalisées sur l'émulateur en ligne :

https://bellard.org/jslinux/vm.html?url=buildroot-x8é6.cfg

1.

G W

Se connecter sur un serveur debian et afficher les processus avec :
ps -ef

Quel est le PID du processus init ?

Quel est le PPID de init ?

init possede t-il un frére ?

Citer quelques descendants directs de init

6.3 PLUSIEURS SCRIPTS PYTHON

6.

10.

1.

12.
13.

14.

Créer un script python en utilisant l'éditeur nano :
nano test.py

Compléter le script avec le code ci-dessous :
while True:
a=2

Lancer le script en arriere plan (ne bloque pas le terminal avec &) avec la

commande :
python3 test.py &

Afficher les processus. Trouver le PID du script test.py.

Arréter le script avec la commande kill.

Lancer plusieurs fois le script. Afficher les processus. Trouver les PID des
processus d'exécution du script test.py.

Quel est le parent des scripts python?

Déterminer larborescence des processus python en remontant par parent
jusqu'au processus init.

Tuer le processus sshd.

5/6


https://bellard.org/jslinux/vm.html?url=buildroot-x86.cfg
https://www.youtube.com/watch?v=8O4VQVrhoW8
https://www.youtube.com/watch?v=tVceqy6vVqQ

SPECIALITE NSI g CITE B0 L
6.4 PRIORITES

15.
16.

17.
18.

Lancer plusieurs fois le script python précédent.

Afficher avec top les processus et observer les niveaux de priorité et les
ressources utilisées par les scripts.

Identifier l'id d'un script et augmenter sa priorité au maximum avec renice.
Relancer top et observer les modifications.

6.5 INTERBLOCAGE

19.

20.

21.

22.

23.

24.
25.

26.
27.
28.

29.
30.

Créer un script Python ecrit 1.py contenant le code suivant :
import time

f = open("fichier.txt", "a")
f.write("\n Ajouté par le ler script!\n")
while True:
f.write("a")
time.sleep(1)
f.close()

Analyser le code et déterminer ce que fait le script.
Lancer le script et l'arréter apres quelques secondes avec CTRL-C
Vérifier que le fichier. txt a été écrit.

Créer un deuxieme script ecrit 2.py qui ajoute des «Z» dans le méme
fichier. txt.
Lancer le script ecrit_2.py et valider le fonctionnement.

Lancer les 2 en paralléle avec la commande ci-dessous :
python3 ecrit_1.py ||python3 ecrit_2.py

Arréter (CTRL-C) le script ecrit 1.py au bout de 10s puis ecrit 2.py au bout
de 5s.

Vérifier qu'il y a une dizaine de « a» et 5 « Z» dans le fichier. Que peut on en
conclure ?
Quelle instruction bloque l'acces au fichier ?
Quelle instruction libére l'acces au fichier ?
Faire un interblocage entre les 2 scripts avec 2 fichiers en utilisant pour un
algorithme comme :

ouvrir fichier_1
attendre 5s
ouvrir fichier_2

écrire dans fichier_1
écrire dans fichier_ 2

fermer fichier_1
fermer fichier_2

6/6



	Processus
	1 NOTION DE PROCESSUS
	2 ETATS ET ORDONNANCEMENT D'UN PROCESSUS
	3 CRÉATION D'UN PROCESSUS, PID, PPID
	4 GÉRER LES PROCESSUS DEPUIS LE SHELL
	5 INTERBLOCAGE (OU DEADLOCK)
	5.1 PRIORITES

	6 ACTIVITES
	6.1 VIDEOS
	6.2 AFFICHAGE DES PROCESSUS
	6.3 PLUSIEURS SCRIPTS PYTHON
	6.4 PRIORITES
	6.5 INTERBLOCAGE


