
SPECIALITE NSI

Processus
 1 NOTION DE PROCESSUS
Un processus est un programme en cours d'exécution. Il est caractérisé par :

• un ensemble d'instructions à exécuter - souvent stockées dans un fichier sur
lequel on clique pour lancer un programme (par exemple firefox.exe)

• un espace mémoire dédié à ce processus pour lui permettre de travailler sur des
données qui lui sont propres : si vous lancez deux instances de firefox, chacune
travaillera indépendamment de l'autre avec ses propres données.

• des ressources matérielles : processeur, entrées-sorties (accès à internet en
utilisant la connexion Wifi).

 2 ETATS ET ORDONNANCEMENT D'UN PROCESSUS
Dans un système multitâche plusieurs processus sont actifs simultanément, mais un
processeur (simple cœur) ne peut exécuter qu’une instruction à la fois.

Le système d'exploitation, avec son ordonnanceur (ou scheduler en anglais) va partager
le temps de processeur disponible entre tous les processus en sélectionnant le
processus à exécuter parmi ceux qui sont prêts.

Le système d'exploitation alloue à chacun des processus les ressources dont il a besoin
en termes de mémoire, entrées-sorties ou temps processeur.

Un processus peut se trouver dans différents états :

• prêt (ready): le processus attend son tour,
• élu ou en exécution (running): le processus a accès au processeur pour exécuter

ses instructions,
• bloqué ou en attente (sleeping) : le processus attend qu'un événement ou l'accès à

une ressource,
• arrêté (stopped) : le processus a fini son travail ou a reçu un signal de terminaison

(SIGTERM, SIGKILL, ...). Il libère les ressources qu'il occupe.

Si une ressource demandée est inaccessible, un
processus en cours d'exécution peut passer en
attente (1).

Lorsque la ressource est disponible, le
processus devient prêt (4).

Le système d'exploitation (ordonnanceur) lui
autorise son exécution (3).

Il le passera en état prêt afin de pouvoir exécuter
un autre processus (2).

1/6

SPECIALITE NSI

 3 CRÉATION D'UN PROCESSUS, PID,
PPID

La création d'un processus peut intervenir :

• par une action d'un utilisateur (lancement de l'application),
• par un appel d'un autre processus « père »,
• au démarrage du système (le processus « init » est alors le père).

Un processus est caractérisé par un identifiant unique : son PID (Process Identifier).

Lorsqu'un processus engendre un fils, l'OS génère un nouveau numéro de processus
pour le fils. Le fils connaît aussi le numéro de son père : le PPID (Parent Process
Identifier).

Ci-dessous : le processus du terminal bash (885) a été lancé par sshd (884).
UID PID PPID C STIME TTY TIME CMD

root 814 1 0 10:55 ? 00:00:00 /usr/sbin/sshd -D

root 829 2 0 10:55 ? 00:00:00 [kworker/0:6-events]

root 872 814 0 10:55 ? 00:00:00 sshd: nsi [priv]

nsi 875 1 0 10:55 ? 00:00:00 /lib/systemd/systemd --user

nsi 876 875 0 10:55 ? 00:00:00 (sd-pam)

nsi 884 872 0 10:55 ? 00:00:00 sshd: nsi@pts/0

nsi 885 884 0 10:55 pts/0 00:00:00 -bash

 4 GÉRER LES PROCESSUS DEPUIS LE SHELL
Création d’un processus qui va exécuter le programme commande

% commande

ps : Liste les processus

• Pour lister les processus actifs :

% ps ax

• Pour lister les processus actifs avec leurs utilisateurs :

% ps axu

• Pour lister les processus actifs avec les informations sur les utilisateurs et sur
l'occupation mémoire :

% ps axum

top Affichage en continu des informations relatives aux processus
• M : trie la liste par ordre décroissant d'occupation mémoire. Pratique pour repérer

les processus trop gourmands
• P : trie la liste par ordre décroissant d'occupation processeur
• i : filtre les processus inactifs.
• V : permet d'avoir la vue arborescente sur les processus.
• q : permet de quitter top

2/6

SPECIALITE NSI

kill « tue » le processus désigné avec un signal de
terminaison :

• SIGTERM (15) : demande la terminaison d'un processus. Cela permet au processus
de se terminer proprement en libérant les ressources allouées.

• SIGKILL (9) : demande la terminaison immédiate et inconditionnelle d'un
processus. C'est une terminaison violente à n'appliquer que sur les processus
récalcitrants qui ne répondent pas au signal SIGTERM.

% kill -9 pid

killall « tue » le processus désigné a« tue » les processus désignés par leur nom
% killall nom

pstree permet de visualiser l'arbre de processus.

 5 INTERBLOCAGE (OU DEADLOCK)
L'interblocage peut se produire lorsque des processus concurrents s'attendent
mutuellement. Les processus sont alors bloqués définitivement.

Le processus P1 est
exécuté. Il accède à la
ressource R1.

L'ordonnanceur passe la
main au processus P2. Celui
ci accède à la ressource R2.

Puis P2 essaye d'accéder
à la ressource R1 qui est
toujours utilisée par P1.

L'ordonnanceur place P2
en attente tant que R1 est
utilisée.

L'ordonnanceur passe la
main au processus P1. Celui
ci essaye d'accéder à la
ressource R2 qui est
toujours utilisée par P2...

L'ordonnanceur place P1
en attente tant que R2 est
utilisée...
Les 2 processus se sont
inter-bloqués...

3/6

SPECIALITE NSI

 5.1 PRIORITES

Sous Linux, on peut passer des consignes à l'ordonnanceur en fixant des priorités aux
processus dont on est propriétaire : Cette priorité est un nombre entre -20 (plus
prioritaire) et +20 (moins prioritaire). Seul root peut modifier la priorité de -20 à 20. Les
autres utilisateurs ne peuvent que diminuer la priorité de leurs processus.

On peut agir à 2 niveaux :

• fixer une priorité à une nouvelle tache dès son démarrage avec la commande
nice

• modifier la priorité d'un processus en cours d'exécution grâce à la commande
renice

Les colonne PR et NI de la commande top montrent le niveau de priorité de chaque
processus
Le lien entre PR et NI est simple : PR = NI + 20 ce qui fait qu'une priorité PR de 0 équivaut
à un niveau de priorité maximal.
Exemple : Pour baisser la priorité du process terminator dont le PID est 21523, il
suffit de taper
renice +10 21523

4/6

SPECIALITE NSI

 6 ACTIVITES

 6.1 VIDEOS

Visionner les vidéos :
https://www.youtube.com/watch?v=8O4VQVrhoW8

https://www.youtube.com/watch?v=tVceqy6vVqQ

 6.2 AFFICHAGE DES PROCESSUS

Les activités peuvent être réalisées sur l'émulateur en ligne :

https://bellard.org/jslinux/vm.html?url=buildroot-x86.cfg

1. Se connecter sur un serveur debian et afficher les processus avec :
ps -ef

2. Quel est le PID du processus init ?
3. Quel est le PPID de init ?
4. init possède t-il un frère ?
5. Citer quelques descendants directs de init

 6.3 PLUSIEURS SCRIPTS PYTHON

6. Créer un script python en utilisant l'éditeur nano :
nano test.py

7. Compléter le script avec le code ci-dessous :

while True:

 a=2

8. Lancer le script en arrière plan (ne bloque pas le terminal avec &) avec la
commande :
python3 test.py &

9. Afficher les processus. Trouver le PID du script test.py.
10. Arrêter le script avec la commande kill.
11. Lancer plusieurs fois le script. Afficher les processus. Trouver les PID des

processus d’exécution du script test.py.

12. Quel est le parent des scripts python?
13. Déterminer l’arborescence des processus python en remontant par parent

jusqu'au processus init.
14. Tuer le processus sshd.

5/6

https://bellard.org/jslinux/vm.html?url=buildroot-x86.cfg
https://www.youtube.com/watch?v=8O4VQVrhoW8
https://www.youtube.com/watch?v=tVceqy6vVqQ

SPECIALITE NSI

 6.4 PRIORITES

15. Lancer plusieurs fois le script python précédent.

16. Afficher avec top les processus et observer les niveaux de priorité et les
ressources utilisées par les scripts.

17. Identifier l'id d'un script et augmenter sa priorité au maximum avec renice.
18. Relancer top et observer les modifications.

 6.5 INTERBLOCAGE

19. Créer un script Python ecrit_1.py contenant le code suivant :
import time

f = open("fichier.txt", "a")

f.write("\n Ajouté par le 1er script!\n")

while True:

f.write("a")

time.sleep(1)

f.close()

20. Analyser le code et déterminer ce que fait le script.
21. Lancer le script et l'arrêter après quelques secondes avec CTRL-C
22. Vérifier que le fichier.txt a été écrit.

23. Créer un deuxième script ecrit_2.py qui ajoute des « Z » dans le même
fichier.txt.

24. Lancer le script ecrit_2.py et valider le fonctionnement.
25. Lancer les 2 en parallèle avec la commande ci-dessous :

python3 ecrit_1.py ||python3 ecrit_2.py

26. Arrêter (CTRL-C) le script ecrit_1.py au bout de 10s puis ecrit_2.py au bout
de 5s.

27. Vérifier qu'il y a une dizaine de « a » et 5 « Z » dans le fichier. Que peut on en
conclure ?

28. Quelle instruction bloque l'accès au fichier ?
29. Quelle instruction libère l'accès au fichier ?
30. Faire un interblocage entre les 2 scripts avec 2 fichiers en utilisant pour un

algorithme comme :

• ouvrir fichier_1
• attendre 5s
• ouvrir fichier_2

• écrire dans fichier_1
• écrire dans fichier_2

• fermer fichier_1
• fermer fichier_2

6/6

	Processus
	1 NOTION DE PROCESSUS
	2 ETATS ET ORDONNANCEMENT D'UN PROCESSUS
	3 CRÉATION D'UN PROCESSUS, PID, PPID
	4 GÉRER LES PROCESSUS DEPUIS LE SHELL
	5 INTERBLOCAGE (OU DEADLOCK)
	5.1 PRIORITES

	6 ACTIVITES
	6.1 VIDEOS
	6.2 AFFICHAGE DES PROCESSUS
	6.3 PLUSIEURS SCRIPTS PYTHON
	6.4 PRIORITES
	6.5 INTERBLOCAGE

